COUNTING DISTINCT FUZZY SUBGROUPS OF SOME RANK-3 ABELIAN GROUPS
Authors
Abstract:
In this paper we classify fuzzy subgroups of a rank-3 abelian group $G = mathbb{Z}_{p^n} + mathbb{Z}_p + mathbb{Z}_p$ for any fixed prime $p$ and any positive integer $n$, using a natural equivalence relation given in cite{mur:01}. We present and prove explicit polynomial formulae for the number of (i) subgroups, (ii) maximal chains of subgroups, (iii) distinct fuzzy subgroups, (iv) non-isomorphic maximal chains of subgroups and (v) classes of isomorphic fuzzy subgroups of $G$. Illustrative examples are provided.
similar resources
counting distinct fuzzy subgroups of some rank-3 abelian groups
in this paper we classify fuzzy subgroups of a rank-3 abelian group $g = mathbb{z}_{p^n} + mathbb{z}_p + mathbb{z}_p$ for any fixed prime $p$ and any positive integer $n$, using a natural equivalence relation given in cite{mur:01}. we present and prove explicit polynomial formulae for the number of (i) subgroups, (ii) maximal chains of subgroups, (iii) distinct fuzzy subgroups, (iv) non-isomorp...
full textThe number of Fuzzy subgroups of some non-abelian groups
In this paper, we compute the number of fuzzy subgroups of some classes of non-abeilan groups. Explicit formulas are givenfor dihedral groups $D_{2n}$, quasi-dihedral groups $QD_{2^n}$, generalized quaternion groups $Q_{4n}$ and modular $p$-groups $M_{p^n}$.
full textFuzzy Subgroups of Rank Two Abelian p-Group
In this paper we enumerate fuzzy subgroups, up to a natural equivalence, of some finite abelian p-groups of rank two where p is any prime number. After obtaining the number of maximal chains of subgroups, we count fuzzy subgroups using inductive arguments. The number of such fuzzy subgroups forms a polynomial in p with pleasing combinatorial coefficients. By exploiting the order, we label the s...
full textCounting Number of Fuzzy Subgroups of Some of Dihedral Groups
Abstract: In this paper, we compute number of fuzzy subgroups of some dihedral groups such as D2pn where p is a prime number and D2p1×p2×···×pn where p1, p2, ..., pn are distinct prime numbers. We use their chain diagram to determine the number of their fuzzy subgroups and present an explicit recursive formula to D2pn and at the result in specially case D2n and finally a formula to count number...
full textthe number of fuzzy subgroups of some non-abelian groups
in this paper, we compute the number of fuzzy subgroups of some classes of non-abeilan groups. explicit formulas are givenfor dihedral groups $d_{2n}$, quasi-dihedral groups $qd_{2^n}$, generalized quaternion groups $q_{4n}$ and modular $p$-groups $m_{p^n}$.
full textfuzzy subgroups of rank two abelian p-group
in this paper we enumerate fuzzy subgroups, up to a natural equivalence, of some finite abelian p-groups of rank two where p is any prime number. after obtaining the number of maximal chains of subgroups, we count fuzzy subgroups using inductive arguments. the number of such fuzzy subgroups forms a polynomial in p with pleasing combinatorial coefficients. by exploiting the order, we label the s...
full textMy Resources
Journal title
volume 14 issue 1
pages 163- 181
publication date 2017-02-28
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023